.. |deg| unicode:: U+00B0 # Degree symbol .. module:: windkit .. _windkit_api: ================= API Reference ================= | --------------------------- Wind Conditions ================ The WindKit API provides a set of functions to work with wind conditions, the "raw" wind speed and direction data, and wind climates in specific formats: time-series, histogram, weibull, and the WAsPs generalized wind climate and geostrophic wind climate formats. Wind functions ---------------------- .. autosummary:: :toctree: wind_funcs_autogen wind_speed wind_direction wind_speed_and_direction wind_vectors wind_direction_difference wd_to_sector vinterp_wind_direction vinterp_wind_speed rotor_equivalent_wind_speed Wind climate functions ------------------------------ .. autosummary:: :toctree: wind_climate_autogen create_met_fields mean_ws_moment ws_cdf ws_freq_gt_mean mean_wind_speed mean_power_density get_cross_predictions Time Series Wind Climate (TSWC) --------------------------------- .. autosummary:: :toctree: tswc_autogen validate_tswc is_tswc create_tswc read_tswc tswc_from_dataframe tswc_resample Long-term correction ------------------------ The long-term correction (LTC) module provides functionality for performing long-term corrections on wind time series data. It includes methods for linear regression and variance ratio methods. .. autosummary:: :toctree: ltc_autogen ltc.LinRegMCP ltc.VarRatMCP Binned Wind Climate (BWC) --------------------------- .. autosummary:: :toctree: bwc_autogen validate_bwc is_bwc create_bwc read_bwc bwc_from_tswc bwc_to_file combine_bwcs weibull_fit Weibull Wind Climate (WWC) -------------------------- .. autosummary:: :toctree: wwc_autogen validate_wwc is_wwc create_wwc read_wwc read_mfwwc wwc_to_file wwc_to_bwc weibull_combined Generalized Wind Climate (GWC) ------------------------------- .. autosummary:: :toctree: gwc_autogen validate_gwc is_gwc create_gwc read_gwc gwc_to_file Geostrophic Wind Climate (GeoWC) --------------------------------- .. autosummary:: :toctree: bwc_autogen validate_geowc is_geowc | ----------------------------------- Topography ===================== :ref:`topographic_data` provides the roughness and elevation data that is used to model the wind resource. The tools in WindKit allow you to work with both raster and vector based maps, and use the powerful GDAL library behind the scenes to enable a wide variety of file formats to be used. Landcover ----------------- .. autosummary:: :toctree: lc_table_autogen LandCoverTable get_landcover_table add_landcover_table roughness_to_landcover landcover_to_roughness read_roughness_map read_landcover_map landcover_map_to_file roughness_map_to_file Elevation ------------------ .. autosummary:: :toctree: lc_table_autogen read_elevation_map elevation_map_to_file Raster maps ---------------- .. autosummary:: :toctree: lc_table_autogen create_raster_map get_raster_map Vector maps ---------------- .. autosummary:: :toctree: lc_table_autogen create_vector_map get_vector_map Map conversion ---------------- .. autosummary:: :toctree: lc_table_autogen lines_to_polygons polygons_to_lines snap_to_layer check_dead_ends check_lines_cross | ----------------------------------- Wind Farm ================== Wind Turbines ------------------ .. autosummary:: :toctree: wind_turbines_autogen validate_windturbines is_windturbines check_wtg_keys create_wind_turbines_from_dataframe create_wind_turbines_from_arrays wind_turbines_to_geodataframe Wind Turbine Generators (WTG) ------------------------------ Windkit's wind turbine API has routines to load both wind turbine generator power curves, and to create layouts of wind farms. .. autosummary:: :toctree: wtg_autogen validate_wtg is_wtg RegulationType estimate_regulation_type read_wtg wtg_power wtg_cp wtg_ct Losses and Uncertainty ----------------------- Windkit has support for basic loss and uncertainty calculations to obtain, for example, a p90 of AEP estimates. .. autosummary:: :toctree: l_and_u_autogen validate_uncertainty_table get_uncertainty_table total_uncertainty uncertainty_table_summary total_uncertainty_factor | ----------------------------------- Spatial ================== The WindKit Geospatial Tools allow you to perform common GIS functions such as convert between the different :ref:`geospatial_structures`, reproject or warp the data into common projections, and clip or mask the data based on additional data sources. In addition to the provided tools, since WindKit stores its objects in the formats of powerful python libraries, you can also make use of additional `geopandas `_ functions for vector data, and additional `xarray `_ functions for raster data. Throughout this documentation, the following abbreviations are used to reference different data types. * geodf - either a `geopandas.GeoDataFrame` or `geopandas.GeoSeries` * xr_data - either an `xarray.DataArray` or `xarray.Dataset` * CRS - `pyproj.crs.CRS` Coordinate Reference System ----------------------------- .. autosummary:: :toctree: crs_autogen spatial.get_crs spatial.add_crs spatial.set_crs spatial.crs_are_equal Bounding Box ------------------ .. autosummary:: :toctree: bbox_autogen spatial.BBox Create spatial objects ----------------------- .. autosummary:: :toctree: create_spatial_autogen spatial.create_dataset spatial.create_raster spatial.create_point spatial.create_stacked_point spatial.create_cuboid Validate spatial objects ------------------------- .. autosummary:: :toctree: validate_spatial_autogen spatial.is_point spatial.is_stacked_point spatial.is_cuboid spatial.is_raster Convert between spatial objects ------------------------------- .. autosummary:: :toctree: convert_spatial_autogen spatial.to_point spatial.to_cuboid spatial.to_stacked_point spatial.to_raster spatial.gdf_to_ds spatial.ds_to_gdf Interpolation ------------------ .. autosummary:: :toctree: interpolation_autogen spatial.interp_structured_like spatial.interp_unstructured spatial.interp_unstructured_like Comparison ------------------ .. autosummary:: :toctree: spatial_comparison_autogen spatial.are_spatially_equal spatial.equal_spatial_shape spatial.covers Spatial operations ------------------ .. autosummary:: :toctree: spatial_operations_autogen spatial.clip spatial.clip_with_margin spatial.mask spatial.nearest_points spatial.reproject spatial.warp spatial.add_projected_wrf_coordinates spatial.count_spatial_points | ----------------------------------- Plotting ================== WindKit Plotting allows you to execute a number of different plotting functions in order to visualize and analyze your data. Plots are largely broken into two categories; statistical and maps. Statistical plots are generally plotted using Plotly and Dash Python libraries at a single location, e.g. mast or turbine location, while maps use `geopandas `_ and `xarray `_ functions directly to show an overview of the area. .. autosummary:: :toctree: plotting_autogen plot.histogram plot.histogram_lines plot.operational_curves plot.raster_plot plot.roughness_rose plot.time_series plot.vertical_profile plot.wind_rose plot.color plot.landcover_map | ----------------------------------- Other ================== Tutorial data ------------------ .. autosummary:: :toctree: tutorial_autogen get_tutorial_data Weibull distribution -------------------- .. autosummary:: :toctree: weibull_autogen weibull.fit_weibull_wasp_m1_m3_fgtm weibull.fit_weibull_wasp_m1_m3 weibull.fit_weibull_k_sumlogm weibull.weibull_moment weibull.weibull_pdf weibull.weibull_cdf weibull.weibull_freq_gt_mean weibull.get_weibull_probability WAsP ------------------ .. autosummary:: :toctree: workspace_autogen Workspace WengWorkspace read_cfdres Coordinates ------------------ .. autosummary:: :toctree: coordinates_autogen create_sector_coords create_wsbin_coords Get reanalysis data ------------------- .. autosummary:: :toctree: reanalysis_autogen get_era5