pywasp.wasp.downscale
- pywasp.wasp.downscale(gwc, topo_map, output_locs, conf=None, interp_method='nearest', mesoclimate=None, mesoclimate_interp_method='nearest', return_site_effects=False, add_met=True, cfd_volume=None)[source]
Calculate site_effects, downscaled wind climate, and meteorlogical fields in a single step
- Parameters:
gwc (
xarray.Dataset
) – Generalized wind climate xr.Dataset to downscaletopo_map (
TopographyMap
) – TopographyMap of the region to modeloutput_locs (
xarray.Dataset
) – Locations to calculate at created using create_datasetconf (
Config
) – Configuration information from WAsPinterp_method (
str
, optional) – String indicating interpolation method, by default “nearest”. Options are {“nearest”, “linear”, “cubic”, “natural”, “given”}. If “given”, the function will not interpolate the generalized wind climate, but assumes that thegwc
andoutput_locs
have the same spatial structure. If “nearest”, it will use the nearest neighbor interpolation. If “linear”, it will use linear interpolation. If “cubic”, it will use cubic interpolation. If “natural”, it will use natural neighbor interpolation.mesoclimate (
xarray.Dataset
, defaultNone
) – If None use the ERA5 reanalysis to obtain the mesoclimate, otherwise one can create a dataset using thepw.wasp.get_climate()
methodmesoclimate_interp_method (
str
, optional) – Interpolation method for mesoclimate, by default ‘nearest’return_site_effects (
bool
) – Include the site_effects in the output?add_met (
bool
) – Calculate and include meteorlogical fields from add_met_fields in the output?cfd_volume (
xarray.Dataset
orlist
ofxarray.Datasets
, defaultNone
) – WAsP CFD volume xarray dataset that is used for obtaining site effects
- Returns:
xarray.Dataset
– PyWAsP formated xr.Dataset containing sectorwise A, k, frequency, total A and k at site. Optionally include speedups, rix, elevation and other site_effects, and/or wind speeds, air and power densities.
Notes
Run WAsP’s wprms_nt function to perform the “down” part of the WAsP framework. This will take the generalized data and convert it to a site specific weibull distribution based on the local conditions.