windkit.total_uncertainty_factor
- windkit.total_uncertainty_factor(uncertainty_table, sensitivity_factor=1.5, percentile=90)[source]
Calculate the total uncertainty factor for a given exceedance probability or a list of probabilities.
- Parameters:
uncertainty_table (DataFrame) – The DataFrame containing the uncertainties.
sensitivity_factor (float) – The sensitivity factor that multiplies the wind uncertainty terms.
percentile (int, float, or list/tuple of int/float) – The exceedance probability or probabilities (Pxx) for which to calculate the uncertainty factor. Default is 90 (for P90).
- Returns:
The total uncertainty factor(s) that can be multiplied by the net_aep to get the Px value(s).
- Return type:
Notes
The function to calculate the value of AEP associated with a given exceedance probability is: Px = net_aep * (1 - ppf * total_uncertainty_value / 100), where:
ppf is the quantile (inverse CDF) corresponding to the given probability, for a normal distribution (mu=0, sigma=1).
Examples
>>> uncertainty_table = get_uncertainty_table('dtu_default') >>> sensitivity_factor = sensitivity_factor(pwc, wtg, wind_perturbation_factor=0.05) >>> total_uncertainty_factor(uncertainty_table, sensitivity_factor, percentile=90) >>> total_uncertainty_factor(uncertainty_table, sensitivity_factor, percentile=[90, 95, 99])