windkit.validate_uncertainty_table
- windkit.validate_uncertainty_table(uncertainty_table)[source]
Perform several checks to ensure that an uncertainty table DataFrame is valid.
- Parameters:
uncertainty_table (DataFrame) – The DataFrame containing the uncertainties.
- Raises:
If mandatory columns are missing, are incorrectly defined, or contain missing values. - If the uncertainty_kind column contains values other than ‘wind’ or ‘energy’. - If the uncertainty_percentage column contains invalid data types. - If uncertainty_percentage values are outside the specified bounds.
Notes
The function assumes that the DataFrame columns are named exactly as specified in the mandatory columns list: MANDATORY_COLUMNS = [‘uncertainty_kind’, ‘uncertainty_name’, ‘uncertainty_percentage’].
The ‘uncertainty_percentage’ values must be within the range specified by ‘uncertainty_lower_bound’ and ‘uncertainty_upper_bound’ for each row, if these are present.
Examples
>>> uncertainty_table = get_uncertainty_table('dtu_default') >>> validate_uncertainty_table(uncertainty_table)