pywasp.px_aep#
- pywasp.px_aep(uncertainty_table, ds_net_aep, sensitivity_factor=1.5, percentile=90)[source]#
Calculate the AEP level reached with a given probability.
- Parameters:
uncertainty_table (
DataFrame) – The DataFrame containing the uncertainties.ds_net_aep (
xarray.Dataset) – The dataset containing the net_aep and net_aep_sector values.sensitivity_factor (
float, optional) – The sensitivity factor value can either be calculated with theestimate_sensitivity_factorfunction or given directly. Default is 1.5. Use ofestimate_sensitivity_factoris recommended.percentile (
int, optional) – The exceedance probability corresponding to the desired Pxx percentile. Default is 90 to calculate P90 (AEP value with a 90% chance of being exceeded).
- Returns:
xarray.Dataset– The updated dataset including the Px and Px_sector values.- Raises:
ValueError – If neither
net_aepnornet_aep_sectorare in the dataset.
Notes
The function first validates the uncertainty table. See
validate_uncertainty_tablefunction.The function will execute even if only one of the two net_aep variables is present. For example, if net_aep_sector is missing, the function will still calculate and append the Px for all sectors, and vice versa.
Examples
>>> uncertainty_table = get_uncertainty_table('dtu_default') >>> sf = estimate_sensitivity_factor(pwc, wtg, wind_perturbation_factor=0.05) >>> ds_net_aep = net_aep(uncertainty_table, ds_potential_aep) >>> px_aep(uncertainty_table, ds_net_aep, sensitivity_factor=sf, percentile=90)