pywasp.LandCoverTable

class pywasp.LandCoverTable(*args, **kwargs)[source]

Class with methods to work with landcover tables

Methods

__init__(*args, **kwargs)

add_colors_to_table([levels, colors, html, ...])

Return the landover table with an additional / updated color column.

clear()

Remove all items from the dict.

copy()

Return a shallow copy of the dict.

dic_from_matrix(outlctypes)

Creates dictionary from matrix that results from fortran routine

from_dict_ora(dic[, z0frac, dfrac, makecopy])

Use ORA model to convert tree height to LandCoverTable.

from_dict_raupach(dic)

Use Raupach model to convert treeheight and LAI

from_dict_scadis(dic[, alpha, beta, z0s])

Use SCADIS 1D model to convert treeheight and LAI

fromkeys(iterable[, value])

Create a new dictionary with keys from iterable and values set to value.

get(key[, default])

Return the value for key if key is in the dictionary, else default.

get_table(dataset[, table])

Get landcover table from dataset and table name.

items()

Return a set-like object providing a view on the dict's items.

keys()

Return a set-like object providing a view on the dict's keys.

pop(k[,d])

If the key is not found, return the default if given; otherwise, raise a KeyError.

popitem()

Remove and return a (key, value) pair as a 2-tuple.

read_json(filename)

Create LandCoverTable from json file.

setdefault(key[, default])

Insert key with a value of default if key is not in the dictionary.

to_json(filename)

Write landcover table to json.

update([E, ]**F)

If E is present and has a .keys() method, then does: for k in E.keys(): D[k] = E[k] If E is present and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed by: for k in F: D[k] = F[k]

values()

Return an object providing a view on the dict's values.