pywasp.wasp.downscale
- pywasp.wasp.downscale(genwc, topo_map, output_locs, conf=None, interp_method='given', mesoclimate=None, mesoclimate_interp_method='nearest', return_site_factors=False, add_met=True, cfd_volume=None)[source]
Calculate site_effects, downscaled wind climate, and meteorlogical fields in a single step
- Parameters:
genwc (
xarray.Dataset
) – Generalized wind climate xr.Dataset to downscaletopo_map (
TopographyMap
) – TopographyMap of the region to modeloutput_locs (
xarray.Dataset
) – Locations to calculate at created using create_datasetconf (
Config
) – Configuration information from WAsPinterp_method (
str
, optional) – String indicating interpolation method, by default Nonemesoclimate (
xarray.Dataset
, defaultNone
) – If None use the ERA5 reanalysis to obtain the mesoclimate, otherwise one can create a dataset using thepw.wasp.get_climate()
methodmesoclimate_interp_method (
str
, optional) – Interpolation method for mesoclimate, by default ‘nearest’return_site_factors (
bool
) – Include the site_factors in the output?add_met (
bool
) – Calculate and include meteorlogical fields from add_met_fields in the output?cfd_volume (
xarray.Dataset
orlist
ofxarray.Datasets
, defaultNone
) – WAsP CFD volume xarray dataset that is used for obtaining site effects
- Returns:
xarray.Dataset
– PyWAsP formated xr.Dataset containing sectorwise A, k, frequency, total A and k at site. Optionally include speedups, rix, elevation and other site_factors, and/or wind speeds, air and power densities.
Notes
Run WAsP’s wprms_nt function to perform the “down” part of the WAsP framework. This will take the generalized data and convert it to a site specific weibull distribution based on the local conditions.