pywasp.wasp.downscale_from_site_effects
- pywasp.wasp.downscale_from_site_effects(genwc, site_effects, conf=None, interp_method='given', mesoclimate=None, mesoclimate_interp_method='nearest', return_site_factors=False, add_met=False)[source]
Downscale a generalized wind climate using precalculated site effects
- Parameters:
genwc (
xarray.Dataset
) – Generalized wind climate xr.Dataset to downscalesite_effects (
xarray.Dataset
) – Site effects dataset created from TopographyMap.rose_to_site_effects or TopographyMap.get_site_effects.conf (
pw.wasp.Config
) – Configuration information from WAsPinterp_method (
str
, optional{'given','nearest','natural','linear'}
) – String indicating interpolation method, by default None. ‘None’ tries to select the best interpolation method based on the spatial structure of the data. Please check documentation in the functionpw.wasp.interpolate_gwc()
.mesoclimate (
xarray.Dataset
, defaultNone
) – If None use the CFSR reanalysis to obtain the mesoclimate, otherwise one can create a dataset using thepw.wasp.get_climate()
methodmesoclimate_interp_method (
str
, optional) – Interpolation method for mesoclimate, by default ‘nearest’return_site_factors (
bool
) – Include the site_factors in the output?add_met (
bool
) – Calculate and include meteorlogical fields from add_met_fields in the output?
- Returns:
xarray.Dataset
– PyWAsP formated xr.Dataset containing sectorwise A, k, frequency at site
Notes
Run WAsP’s wprms_nt function to perform the “down” part of the WAsP framework. This will take the generalized data and convert it to a site specific weibull distribution based on the local conditions.